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Section I 
 

10 marks  
Attempt questions 1 – 10  
Allow about 15 minutes for this section 
 
Use the multiple-choice answer sheet for Questions 1-10.  
________________________________________________________________________________ 
 
1 What is 4.09784 correct to three significant figures? 
   
 (A)    4.09  

 (B)    4.10  

 (C)    4.097  

 (D)    4.098 
 
2 The quadratic equation 2 3 1 0x x    has roots  and .  

 What is the value of  ?     

 (A)    4 

 (B)    2 

 (C)   4  

 (D)   2   
 

3 The diagram shows the line .  

  
 

 What is the slope of the line ?  
 

 (A)   3  

 (B)   3  

 (C)   1
3

 

 (D)   1
3

  
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4 What is the derivative of ?
cos

x
x

 

 (A)   2

cos sin
cos
x x x

x
  

 (B)   2

cos sin
cos
x x x

x
  

 (C)   2

sin cos
cos

x x x
x

  

 (D)   2

sin cos
cos

x x x
x

   

 

5 What is the sum of the first ten terms of the series 96 48 24 12 ...?     
 

 (A)   63.9375 

 (B)   191.8125 

 (C)   32.736  

 (D)   98.208 
 

6 Which of the following statements is INCORRECT? 
 

   (A)   log logna n a  

 (B)   log log logab a b   

 (C)     loglog
log

aa b
b

   

 (D)   log 1e   

 
7 The curve 2 6 3y ax x    has a stationary point at 1.x   What is the value of ?a  

 (A)    2 

 (B)   1  

 (C)    3 

 (D)  3  

  
 
 
 
 
 
 
 
 
 



 

 – 3 – 

8  What is the value of 
4

1

1
3x ?dx  

  (A)    1 ln 3
3

 

 (B)    1 ln 4
3

 

 

 (C)    ln9  
 

 (D)    ln12  

    
9  

       
 
 The equation of the graph sketched above could be: 
 
 (A)   1 sin2y x   
 (B)   1 sin2y x   
 (C)   1 2sin2y x   
 (D)   1 2siny x   
  

10 What is the range of the function y x ?x  
  

  (A)  All real y  
 

 (B)  0y   
 

 (C)  0y   
 
 (D)  0y   
 
 
 
 
 

End of Section I 
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Section II 
 

90 marks  
Attempt Questions 11 – 16  
Allow about 2 hours and 45 minutes for this section 
 
Answer each question in a SEPARATE writing booklet. Extra writing booklets are available. 
 
In Questions 11-16, your responses should include relevant mathematical reasoning and/or 
calculations. 
________________________________________________________________________________ 
 
Question 11 (15 marks) Use a SEPARATE writing booklet.  
 
 

(a) Factorise 22 7 3.x x             2 
 
 
(b) Solve 3 1 2.x                2 

 
 
(c) Find the equation of the tangent to the curve 2y x at the point where 3.x      2 
 
 
(d) Differentiate  523 .xe               2 

  
 
(e) Find the coordinates of the focus of the parabola  2 16 2 .x y          2 

 

(f) The area of a sector of a circle of radius 6 cm is 50 cm2.         2 
 Find the length of the arc of the sector. 
 

(g)         Find 
2

2

0

sec
2
x



 .dx            3 
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Question 12 (15 marks) Use a SEPARATE writing booklet. 
 

          
 
(a)  The diagram shows the points  0,2P and  4,0 .Q The point M is the midpoint of .PQ  

 The line MN is perpendicular to PQ and meets the x axis at G and the y axis at .N  

 

 (i) Show that the gradient of PQ is 1 .
2

           1 

 (ii) Find the coordinates of .M                     2 
 
 (iii) Find the equation of the line .MN          2 
 

              (iv)         Show that N has coordinates  0, 3 .         1 
 
              (v)          Find the distance .NQ            1 
 
             (vi)          Find the equation of the circle with centre N and radius .NQ                 2 
 
             (vii)         Hence show that the circle in part (vi) passes through the point .P             1 
 
             (viii) The point R  lies in the first quadrant, and PNQR  is a rhombus.                           2 
                             Find the coordinates of .R  
 
 

(b) The gradient of a curve is given by 2

2 .dy x
dx x e




 The curve passes through     3 

 the point  0,2 .  What is the equation of the curve? 
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Question 13 (15 marks) Use a SEPARATE writing booklet. 
 

(a) For an arithmetic progression, the fifth term is 16 and the eleventh term is 40. 
 

 (i)  Find the first term and the common difference.    3 
 (ii)   How many terms in the sequence must be added to reach a sum of 312?  2 

 
(b) Solve the following equation for :x               2 

2 3 10 0.x xe e    

 
(c) Find the exact value of cos  given that tan 7  and sin 0.     2 

 

(d) Let      22 4 .f x x x    

 (i)  Show that the graph  y f x has no stationary points.   2 

 (ii)  Find the values of x  for which the graph  y f x is concave down,      2 

   and the values for which it is concave up. 
 
 (iii)  Sketch the graph   ,y f x indicating the values of the x and y intercepts. 2 
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Question 14 (15 marks) Use a SEPARATE writing booklet. 
 

(a)  (i)  Simplify 21 sin .        1 
 

    (ii)  Prove the identity  2tan 1 sin sin cos .         2 

 
(b) A particle is moving on the x axis with displacement x metres after t seconds  

 given by the function 
22 25 50x t t    

 

 (i)  What was the initial position of the particle?     1 
 (ii)  What was the initial velocity of the particle?     1 
 (iii)  At what times was the particle at the origin?     2 
 (iv)  At what time was the particle instantaneously at rest?    1 
 (v)  How far did the particle travel between its visits to the origin?   2 

 
(c) Henry borrows $200 000 which is to be repaid in equal monthly instalments. The 

 interest rate is 7.2 % per annum reducible, calculated monthly. 
 

 It can be shown that the amount, $ nA , owing after the nth month is given by the formula 

nA 200 000  2 11 ... ,n nr M r r r       

 where 1.006r  and $M is the monthly repayment.           (Do NOT show this.) 
 

 (i)  The minimum monthly repayment is the amount required to repay the  3 
   loan in 300 instalments. 

   Find the minimum monthly repayment. 

 

 (ii)  Henry decides to make repayments of $2800 each month from the start  2 
   of the loan. 

   How many months will it take for Henry to repay the loan? 
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Question 15 (15 marks) Use a SEPARATE writing booklet. 
 

(a) Show that 23 4 5x x  is positive definite.      2 
 

(b) Xena and George compete in a series of games. The series finishes when one 

 player has won two games. In any game, the probability that Xena wins is 2
3

 

 and the probability that George wins is 1
3

. 

 Part of the tree diagram for the series of games is shown. 

        

 (i)  Copy and complete the tree diagram showing the possible outcomes.  1 
 (ii)  What is the probability that George wins the series?    2 
 (iii)  What is the probability that three games are played in the series?  2 
 

(c) The rate of elimination dQ
dt

of a drug by the kidneys is given by the equation 

dQ kQ
dt

   

 where k is a constant and Q is the quantity of drug present in the blood. In 
 this question, t  is measured in minutes and Q in milligrams. 
 

 (i)  Show that 0
ktQ Q e satisfies the equation .dQ kQ

dt
     1 

 (ii)  The initial quantity of the drug present was mesasured to be 100 mg  2 

   and at time 20t  minutes, the quantity was 74 mg. Find the values 

   of 0Q  and .k  

   Give k correct to five decimal places and 0Q to the nearest mg. 

 (iii)  What is the initial rate of elimination of the drug? Give your answer  1 
   correct to one decimal place? 

 (iv)  How long is it until only half the original quantity of drug remains?  2 
   Give your answer correct to the nearest minute? 

 
Question 15 continues on page 9 
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Question 15 (continued) 
 

(d) Use  Simpson’s  rule  with  three  function  values  to  find  an  approximation  to  the    2 

 value of  
1.5

3

0.5

log .e x dx  

 Give your answer correct to three decimal places. 

 

 

 

 

 

 

 

 

End of Question 15 
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Question 16 (15 marks) Use a SEPARATE writing booklet. 
 

(a)            5 

 

 In the diagram, the shaded region is bounded by  log 2 ,ey x  the x axis 

 and the line 7.x   

 Find the exact value of the area of the shaded region. 
 

(b)  

 
 A cone is inscribed in a sphere of radius ,a centred at .O The height of the cone 

 is x and the radius of the base is ,r as shown in the diagram. 

 (i)  Show that the volume, ,V of the cone is given by  2 31 2 .
3

V ax x    2 

 (ii)  Find the value of x for which the volume of the cone is a maximum.  3 

   You must give reasons why your value of x gives the maximum volume. 

    

 

 

 

 

 

Question 16 continues on page 11 
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Question 16 (continued) 
 

(c)  

 
  ABCD  is a square of side length 2 units. P is the midpoint of .AD  

  CQ is drawn perpendicular to PB  and .APB x   

 

  (i)  Prove that .APB QBC        1 

  (ii)  Hence, or otherwise, show that 4
5

QC  units.    2 

  (iii)  Show that .QD CD        2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

End of paper 
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STANDARD INTEGRALS 

 

   

 

 

0,logln

ln1

0,ln1

,0,sin1

0,tan11

0,sec1tansec

0,tan1sec

0,cos1sin

0,sin1cos

0,1

0,ln1

0 if,0;1,
1

1

22

22

22

22

1

22

1
22

2

1




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
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
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
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
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
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




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